Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 61: 101135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926187

RESUMO

Insect symbionts can alter their host phenotype and their effects can range from beneficial to pathogenic. Moreover, many insects exhibit co-infections, making their study more challenging. Less than 1% of insect species have high-quality referenced genomes available and fewer still also have their symbionts sequenced. Two methods are commonly used to sequence symbionts: whole-genome sequencing to concomitantly capture the host and bacterial genomes, or isolation of the symbiont's genome before sequencing. These methods are limited when dealing with rare or poorly characterized symbionts. Long-read technology is an important tool to generate high-quality genomes as they can overcome high levels of heterozygosity, repeat content, and transposable elements that confound short-read methods. Oxford Nanopore (ONT) adaptive sampling allows a sequencing instrument to select or reject sequences in real time. We describe a method based on ONT adaptive sampling (subtractive) approach that readily permitted the sequencing of the complete genomes of mitochondria, Buchnera and its plasmids (pLeu, pTrp), and Wolbachia genomes in two aphid species, Aphis glycines and Pentalonia nigronervosa. Adaptive sampling is able to retrieve organelles such as mitochondria and symbionts that have high representation in their hosts such as Buchnera and Wolbachia, but is less successful at retrieving symbionts in low concentrations.


Assuntos
Buchnera , Nanoporos , Animais , Buchnera/genética , Elementos de DNA Transponíveis , Insetos/genética
2.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609156

RESUMO

Due to alternative splicing, human protein-coding genes average over eight RNA isoforms, resulting in nearly four distinct protein coding sequences per gene. Long-read RNAseq (IsoSeq) enables more accurate quantification of isoforms, shedding light on their specific roles. To assess the medical relevance of measuring RNA isoform expression, we sequenced 12 aged human frontal cortices (6 Alzheimer's disease cases and 6 controls; 50% female) using one Oxford Nanopore PromethION flow cell per sample. Our study uncovered 53 new high-confidence RNA isoforms in medically relevant genes, including several where the new isoform was one of the most highly expressed for that gene. Specific examples include WDR4 (61%; microcephaly), MYL3 (44%; hypertrophic cardiomyopathy), and MTHFS (25%; major depression, schizophrenia, bipolar disorder). Other notable genes with new high-confidence isoforms include CPLX2 (10%; schizophrenia, epilepsy) and MAOB (9%; targeted for Parkinson's disease treatment). We identified 1,917 medically relevant genes expressing multiple isoforms in human frontal cortex, where 1,018 had multiple isoforms with different protein coding sequences, demonstrating the need to better understand how individual isoforms from a single gene body are involved in human health and disease, if at all. Exactly 98 of the 1,917 genes are implicated in brain-related diseases, including Alzheimer's disease genes such as APP (Aß precursor protein; five), MAPT (tau protein; four), and BIN1 (eight). As proof of concept, we also found 99 differentially expressed RNA isoforms between Alzheimer's cases and controls, despite the genes themselves not exhibiting differential expression. Our findings highlight the significant knowledge gaps in RNA isoform diversity and their medical relevance. Deep long-read RNA sequencing will be necessary going forward to fully comprehend the medical relevance of individual isoforms for a "single" gene.

3.
Nucleic Acids Res ; 49(21): e124, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551429

RESUMO

Genome copy number is an important source of genetic variation in health and disease. In cancer, Copy Number Alterations (CNAs) can be inferred from short-read sequencing data, enabling genomics-based precision oncology. Emerging Nanopore sequencing technologies offer the potential for broader clinical utility, for example in smaller hospitals, due to lower instrument cost, higher portability, and ease of use. Nonetheless, Nanopore sequencing devices are limited in the number of retrievable sequencing reads/molecules compared to short-read sequencing platforms, limiting CNA inference accuracy. To address this limitation, we targeted the sequencing of short-length DNA molecules loaded at optimized concentration in an effort to increase sequence read/molecule yield from a single nanopore run. We show that short-molecule nanopore sequencing reproducibly returns high read counts and allows high quality CNA inference. We demonstrate the clinical relevance of this approach by accurately inferring CNAs in acute myeloid leukemia samples. The data shows that, compared to traditional approaches such as chromosome analysis/cytogenetics, short molecule nanopore sequencing returns more sensitive, accurate copy number information in a cost effective and expeditious manner, including for multiplex samples. Our results provide a framework for short-molecule nanopore sequencing with applications in research and medicine, which includes but is not limited to, CNAs.


Assuntos
Variações do Número de Cópias de DNA , DNA/análise , Oncologia/métodos , Sequenciamento por Nanoporos/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Humanos
4.
Genome Res ; 30(9): 1258-1273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32887686

RESUMO

Improved identification of structural variants (SVs) in cancer can lead to more targeted and effective treatment options as well as advance our basic understanding of the disease and its progression. We performed whole-genome sequencing of the SKBR3 breast cancer cell line and patient-derived tumor and normal organoids from two breast cancer patients using Illumina/10x Genomics, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT) sequencing. We then inferred SVs and large-scale allele-specific copy number variants (CNVs) using an ensemble of methods. Our findings show that long-read sequencing allows for substantially more accurate and sensitive SV detection, with between 90% and 95% of variants supported by each long-read technology also supported by the other. We also report high accuracy for long reads even at relatively low coverage (25×-30×). Furthermore, we integrated SV and CNV data into a unifying karyotype-graph structure to present a more accurate representation of the mutated cancer genomes. We find hundreds of variants within known cancer-related genes detectable only through long-read sequencing. These findings highlight the need for long-read sequencing of cancer genomes for the precise analysis of their genetic instability.


Assuntos
Neoplasias da Mama/genética , Variação Estrutural do Genoma , Sequenciamento Completo do Genoma/métodos , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Metilação de DNA , DNA de Neoplasias , Feminino , Humanos , Nanoporos , Organoides , RNA-Seq
5.
Curr Protoc Hum Genet ; 94: 18.11.1-18.11.14, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696556

RESUMO

Today's short-read sequencing instruments can generate read lengths between 50 bp and 700 bp depending on the specific instrument. These high-throughput sequencing approaches have revolutionized genomic science, allowing hundreds of thousands of full genomes to be sequenced, and have become indispensable tools for many researchers. With greater insight has come the revelation that many genomes are much more complicated than originally thought and include many rearrangements and copy-number variations. Unfortunately, short-read sequencing technologies are not well suited for identifying many of these types of events. Long-read sequencing technologies can read contiguous fragments of DNA in excess of 10 kb and are much better suited for detecting large structural events. The newest long-read sequencing instrument is the MinION device from Oxford Nanopore. The rapid sequencing speed and low upfront instrument cost are features drawing interest in this device from the genomics community. This unit provides a representative protocol for carrying out human genome sequencing on the Oxford Nanopore MinION. © 2017 by John Wiley & Sons, Inc.


Assuntos
Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Genômica/economia , Genômica/instrumentação , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Análise de Sequência de DNA/economia
6.
Toxicol Appl Pharmacol ; 272(1): 245-55, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707608

RESUMO

Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/metabolismo , Crizotinibe , Canal de Potássio ERG1 , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Erlotinib , Canais de Potássio Éter-A-Go-Go/biossíntese , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Indóis/toxicidade , Canais Iônicos/efeitos dos fármacos , Lipídeos/biossíntese , Miócitos Cardíacos/ultraestrutura , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/efeitos dos fármacos , Pirazóis/toxicidade , Piridinas/toxicidade , Pirimidinas/toxicidade , Pirróis/toxicidade , Quinazolinas/toxicidade , RNA/biossíntese , RNA/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sunitinibe
7.
Cell Cycle ; 7(12): 1769-75, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18594201

RESUMO

ErbB2 targeted therapies represent an attractive strategy in breast cancer. Herceptin, an anti-ErbB2 monoclonal antibody, is an approved treatment for patients with ErbB2-overexpressing breast cancers. ErbB2 signaling can also be blocked using small molecule tyrosine kinase inhibitors, like Lapatinib, that compete with ATP for binding at the ErbB2 catalytic kinase domain. The principal adverse event attributable to Herceptin is cardiac toxicity. Data from clinical trials show that, unlike Herceptin, Lapatinib may have reduced cardiac toxicity. This study was conducted to elucidate pathways which may contribute to cardiac toxicity or survival using Lapatinib and Herceptin. Our results show that treatments directed to ErbB1/2 receptors using GW-2974 (a generic ErbB1/2 inhibitor) activated AMPK, a key regulator in mitochondrial energy production pathways in human cardiac cells and cancer cells. Although Herceptin downregulates tumor survival pathways, AMPK fails to be activated in tumor and cardiac cells. When treated in combination with TNFalpha, a known cytokine associated with cardiac toxicity, GW-2974 protected cardiac cells from cell death whereas Herceptin contributed to TNFalpha-induced cellular killing. Since activity of AMPK in cardiac cells is associated with stress induced survival in response to cytokines or energy depletion, cardiac toxicity by Herceptin may be a consequence of failure to induce stress-related survival mechanisms. Thus, the ability to activate AMPK after treatment with tyrosine kinase inhibitors may be a crucial factor for increased efficacy against the tumor and decreased risk of cardiomyopathy.


Assuntos
Antineoplásicos/toxicidade , Complexos Multienzimáticos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/toxicidade , Proteínas Quinases Ativadas por AMP , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Genes p53 , Humanos , Mutação , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...